design bloc randomizat este echivalent design de cercetare la eșantionare aleatorie stratificat. La fel ca eșantionarea stratificată, modelele de blocuri randomizate sunt construite pentru a reduce zgomotul sau variația datelor (vezi Clasificarea modelelor experimentale). Cum o fac? Acestea necesită ca cercetătorul să împartă eșantionul în subgrupuri sau blocuri relativ omogene (analog cu „straturile” în eșantionarea stratificată). Apoi, designul experimental pe care doriți să îl implementați este implementat în cadrul fiecărui bloc sau subgrup omogen., Ideea cheie este că variabilitatea în cadrul fiecărui bloc este mai mică decât variabilitatea întregului eșantion. Astfel, fiecare estimare a efectului de tratament într-un bloc este mai eficientă decât estimările pe întregul eșantion. Și, atunci când punem în comun aceste estimări mai eficiente între blocuri, ar trebui să obținem o estimare generală mai eficientă decât am face-o fără blocare.
aici, putem vedea un exemplu simplu. Să presupunem că am intenționat inițial să realizăm un simplu posttest-doar un design experimental randomizat., Dar, recunoaștem că eșantionul nostru are mai multe subgrupe intacte sau omogene. De exemplu, într-un studiu de Studenti, ne-am putea aștepta ca elevii sunt relativ omogene în ceea ce privește clasa sau an. Deci, decidem să blocăm eșantionul în patru grupe: Boboc, al doilea de studentie, junior și senior. Dacă bănuiala noastră este corectă, că variabilitatea în clasă este mai mică decât variabilitatea pentru întregul eșantion, vom obține probabil estimări mai puternice ale efectului tratamentului în fiecare bloc (a se vedea discuția despre puterea statistică)., În fiecare dintre cele patru blocuri ale noastre, am implementa experimentul simplu post-doar randomizat.observați câteva lucruri despre această strategie. În primul rând, pentru un observator extern, este posibil să nu fie evident că blocați. Ați implementa același design în fiecare bloc. Și nu există niciun motiv pentru care oamenii din diferite blocuri trebuie să fie separați sau separați unul de celălalt. Cu alte cuvinte, blocarea nu afectează neapărat nimic din ceea ce faceți cu participanții la cercetare., În schimb, blocarea este o strategie pentru gruparea persoanelor în analiza datelor dvs. pentru a reduce zgomotul – este o strategie de analiză. În al doilea rând, veți beneficia de un design de blocare numai dacă sunteți corect în bănuiala că blocurile sunt mai omogene decât întregul eșantion este. Dacă greșești – dacă diferite clase la nivel de colegiu nu sunt relativ omogene în ceea ce privește măsurile tale – vei fi rănit prin blocare (vei obține o estimare mai puțin puternică a efectului tratamentului). De unde știi dacă blocarea este o idee bună?, Trebuie să luați în considerare cu atenție dacă grupurile sunt relativ omogene. Dacă sunteți de măsurare atitudini politice, de exemplu, este rezonabil să credem că boboci sunt mai mult ca unul de altul decât sunt ca al doilea de studentie sau juniori? Ar fi mai omogene în ceea ce privește măsurile legate de abuzul de droguri? În cele din urmă, decizia de a bloca implică judecata din partea cercetătorului.
cum blocarea reduce zgomotul
Deci, cum funcționează blocarea pentru a reduce zgomotul în date? Pentru a vedea cum funcționează, trebuie să începeți prin a vă gândi la studiul care nu este blocat., Figura prezintă distribuția pretest-posttest pentru un design experimental ipotetic pre-post randomizat. Folosim simbolul ” X „pentru a indica un caz de grup de programe și simbolul” o ” pentru un membru al grupului de comparație. Puteți vedea că pentru orice valoare specifică pretest, grupul de programe tinde să depășească grupul de comparație cu aproximativ 10 puncte pe posttest. Adică, există aproximativ o diferență medie posttest de 10 puncte.
acum, să luăm în considerare un exemplu în care împărțim eșantionul în trei blocuri relativ omogene., Pentru a vedea ce se întâmplă grafic, vom folosi măsura pretest pentru a bloca. Acest lucru va asigura că grupurile sunt foarte omogene. Să ne uităm la ceea ce se întâmplă în al treilea bloc. Observați că diferența medie este în continuare aceeași ca și pentru întregul eșantion-aproximativ 10 puncte în fiecare bloc. Dar, de asemenea, observați că variabilitatea posttest este mult mai mică decât a fost pentru întregul eșantion.
amintiți-vă că estimarea efectului tratamentului este un raport semnal-zgomot. Semnalul în acest caz este diferența medie. Zgomotul este variabilitatea., Cele două cifre arată că nu am schimbat semnalul în trecerea la blocare — există încă o diferență posttest de 10 puncte. Dar, am schimbat zgomotul — variabilitatea pe posttest este mult mai mică în fiecare bloc care este pentru întregul eșantion. Deci, efectul tratamentului va avea mai puțin zgomot pentru același semnal.
ar trebui să fie clar din grafice că designul de blocare în acest caz va produce efectul de tratament mai puternic. Dar acest lucru este valabil doar pentru că am făcut o treabă bună asigurându-ne că blocurile sunt omogene., Dacă blocurile nu ar fi omogene — variabilitatea lor ar fi la fel de mare ca întreaga probă — am obține de fapt estimări mai proaste decât în cazul experimental simplu randomizat. Vom vedea cum să analizăm datele dintr-un design de bloc randomizat în analiza statistică a designului de bloc randomizat.